Real-time evolution of the buckled Stone-Wales defect in graphene
نویسندگان
چکیده
منابع مشابه
Hydrogen Peroxide Adsorption on Graphene with Stone-Wales Defect
To explore the possibility of using graphene based biosensor, adsorption of hydrogen peroxide on graphene has been investigated using density functional theory. The electronic properties of defect free and defective graphene in the presence of different number of hydrogen peroxide have been studied. The graphene with the most stable configuration defect named as SW defect is considered. The hig...
متن کاملhydrogen peroxide adsorption on graphene with stone-wales defect
to explore the possibility of using graphene based biosensor, adsorption of hydrogen peroxide on graphene has been investigated using density functional theory. the electronic properties of defect free and defective graphene in the presence of different number of hydrogen peroxide have been studied. the graphene with the most stable configuration defect named as sw defect is considered. the hig...
متن کاملHydrogen Peroxide Adsorption on Graphene with Stone-Wales Defect
To explore the possibility of using graphene based biosensor, adsorption of hydrogen peroxide on graphene has been investigated using density functional theory. The electronic properties of defect free and defective graphene in the presence of different number of hydrogen peroxide have been studied. The graphene with the most stable configuration defect named as SW defect is considered. The hig...
متن کاملStudy of Stone-wales Defect on Elastic Properties of Single-layer Graphene Sheets by an Atomistic based Finite Element Model
In this paper, an atomistic based finite element model is developed to investigate the influence of topological defects on mechanical properties of graphene. The general in-plane stiffness matrix of the hexagonal network structure of graphene is found. Effective elastic modulus of a carbon ring is determined from the equivalence of molecular potential energy related to stretch and angular defor...
متن کاملTopological description of the Stone-Wales defect formation energy in carbon nanotubes and graphene
We develop a topological continuum framework to compute the formation energies of Stone-Wales defects in graphene and carbon nanotubes. Our approach makes no a priori assumptions about the analytical form of the dislocation strain fields while explicitly accounting for boundary conditions and defect-defect interactions. The continuum formalism reproduces trends observed in the atomistic simulat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physica E: Low-dimensional Systems and Nanostructures
سال: 2015
ISSN: 1386-9477
DOI: 10.1016/j.physe.2015.03.010